Math 135, Calculus 1, Fall 2020

Project 3: Approximating Functions Due: Friday, Dec 11 by 11:59pm.

The Project

In this project, you will investigate the function $f(x) = e^x \sin(x)$ on the domain $[-2\pi, 2\pi]$, as well as several approximations of this function.

Components. For this project, you will need to submit mathematical solutions to various questions, as well as a single graph. You must submit your project as a single file or Google Document.

For these questions, you must **show all work**, and use the Calculus techniques discussed in class. Answers not supported in this way will **not** be accepted.

A. The function $f(x) = e^x \sin(x)$ [40 points]

Problem 1. Find all critical points of f(x) on $[-2\pi, 2\pi]$. How many are there?

Problem 2. Create a sign chart for the first derivative of f(x) on $[-2\pi, 2\pi]$. Show all work.

Problem 3. Create a sign chart for the second derivative of f(x) on $[-2\pi, 2\pi]$. Show all work. Find the inflection points on $[-2\pi, 2\pi]$. How many are there?

Problem 4. Classify the critical points of f(x) on $[-2\pi, 2\pi]$ using both the First and Second Derivative Tests.

Problem 5. Find the absolute maximum and absolute minimum values of f(x) on $[-2\pi, 2\pi]$ using the Extreme Value Theorem.

B. Approximations of $f(x) = e^x \sin(x)$ [45 points]

B.1. Linearization. The *linearization* of a function f(x) at x = a is a linear function

$$L(x) = A + Bx$$

such that

$$L(a) = f(a), \qquad L'(a) = f'(a).$$

L(x) gives the best approximation of f(x) near x = a as a line.

Problem 6. Find L(x) for $f(x) = e^x \sin(x)$ at x = 0. Show all work. (*Hint: We know that* L(x) *must be of the form* A + Bx. *Can we use the properties of* L(x) *listed above to find the values of* A *and* B?)

Problem 7. How many critical points does L(x) have in $[-2\pi, 2\pi]$? How many inflection points does L(x) have in $[-2\pi, 2\pi]$?

Problem 8. Compute the absolute max and min values of L(x) on $[-2\pi, 2\pi]$ using the EVT.

B.2. **Quadratic approximation.** The *quadratic approximation* of a function f(x) at x = a is a quadratic function

$$Q(x) = A + Bx + Cx^2$$

such that

Q(a) = f(a), Q'(a) = f'(a), Q''(a) = f''(a).

Q(x) gives the best approximation of f(x) near x = a as a parabola.

Problem 9. Find Q(x) for $f(x) = e^x \sin(x)$ at x = 0. Show all work. (*Hint: Can we use the properties of* Q(x) *listed above to find the necessary values of* A, B, and C?)

Problem 10. How many critical points does Q(x) have in $[-2\pi, 2\pi]$? How many inflection points does Q(x) have in $[-2\pi, 2\pi]$?

Problem 11. Compute the absolute max and min values of Q(x) on $[-2\pi, 2\pi]$ using the EVT.

B.3. **Cubic approximation.** The *cubic approximation* of a function f(x) at x = a is a cubic function

$$P(x) = A + Bx + Cx^2 + Dx^3$$

such that

$$P(a) = f(a),$$
 $P'(a) = f'(a),$ $P''(a) = f''(a),$ $P'''(a) = f'''(a).$

P(x) is the best approximation of f(x) near x = a as a cubic function.

Problem 12. Find P(x) for $f(x) = e^x \sin(x)$ at x = 0. Show all work. (*Hint: Can we use the properties of* O(x) *listed above to find the necessary values of* A, B, C, and D?)

Problem 13. How many critical points does P(x) have in $[-2\pi, 2\pi]$? How many inflection points does P(x) have in $[-2\pi, 2\pi]$?

Problem 14. Compute the absolute max and min values of P(x) on $[-2\pi, 2\pi]$ using the EVT.

B.4. Graph.

Problem 15. Using Desmos, plot f(x), L(x), Q(x), and P(x) on the same set of axes. Make sure the domain is at least $[-2\pi, 2\pi]$.

C. General Approximations [15 points]

Suppose f(x) is a function such that f(x), f'(x), f''(x), and f'''(x) are all continuous, and let x = a be some point in the domain of f.

The following formula should be in terms of *a*, f(a), f'(a), f''(a), and f'''(a).

Problem 16. Find a general rule for L(x).

Problem 17. Find a general rule for Q(x).

Problem 18. Find a general rule for P(x).