Math 135, Calculus 1, Fall 2020

09-14: Exponentials and the Logarithm (Section 1.6)

A. EXPONENTIAL FUNCTIONS AND THE LOGARITHM

Exponential functions are of the form $f(x) = b^x$ with b > 0. If b > 1, f(x) is *increasing*, while if 0 < b < 1, f(x) is *decreasing*.

Exponential functions are 1-1, so $b^x = b^t$ exactly when x = t.

Exercise 1. Suppose $3^{x+1} = \left(\frac{1}{3}\right)^{2x}$. Solve for *x*.

The **inverse** of the exponential function $f(x) = b^x$ is called the **logarithm with base** *b*, denoted $\log_b(x)$.

Using the definition of the inverse, we have:

 $y = b^x$ exactly when $\log_b(y) = x$

Exercise 2. Use the above to compute $b^{\log_b x}$ and $\log_b(b^x)$. (Hint: **inverses!** The answer should not be complicated.)

Exercise 3. Compute $\log_3(27)$. (Hint: let $x = \log_3(27)$. Now apply the above framed box.)

Euler's number is the irrational number $e \approx 2.718$. The associated exponential e^x has good properties (to be discovered later). The associated logarithm $\log_e(x) = \ln(x)$ is called the **natural logarithm**.

Exercise 4. Compute the domain and range of ln(x).

Exercise 5. Use the laws of exponents to compute the following without a calculator; all answers are integers. (Hint: use the framed box on the previous page.)

(a) $\log_{b}(1)$

(b) ln(*e*)

(c) $\log_6(9) + \log_6(4)$

Exercise 6. Suppose a bacteria population doubles in size ever 30 minutes. Then, if we started out with 1000 bacteria, we can model this population by the function

$$Q(t) = 1000 \cdot (2)^{t/30}.$$

After how many hours will there be 5000 bacteria?