Math 135, Calculus 1, Fall 2020

09-21: Limit Law Guide

Suppose that $\lim_{x \to a} f(x)$ and $\lim_{x \to a} g(x)$ **both exist**. Then:

- 1. $\lim_{x \to a} [f(x) + g(x)] = \lim_{x \to a} f(x) + \lim_{x \to a} g(x)$ (limit of the sum = sum of the limits)
- 2. $\lim_{x \to a} [f(x) g(x)] = \lim_{x \to a} f(x) \lim_{x \to a} g(x)$ (limit of the difference = difference of the limits)
- 3. $\lim_{x \to a} cf(x) = c \lim_{x \to a} f(x)$ for any constant *c* (constants pull out)
- 4. $\lim_{x \to a} [f(x)g(x)] = \lim_{x \to a} f(x) \cdot \lim_{x \to a} g(x) \quad (limit of the product = product of the limits)$

5.
$$\lim_{x \to a} \frac{f(x)}{g(x)} = \frac{\lim_{x \to a} f(x)}{\lim_{x \to a} g(x)} \text{ if } \lim_{x \to a} g(x) \neq 0 \quad (\text{limit of the quotient} = \text{quotient of the limits})$$

- 6. $\lim_{x \to a} [f(x)]^n = \left[\lim_{x \to a} f(x)\right]^n$ where *n* is any positive integer (*this follows from 4.*)
- 7. $\lim_{x \to a} c = c$ for any constant *c* (the limit of a constant is itself)
- 8. $\lim_{x \to a} x = a$, and $\lim_{x \to a} x^n = a^n$ where *n* is any positive integer.
- 9. $\lim_{x \to a} [f(x)]^{p/r} = [\lim_{x \to a} f(x)]^{p/r}$, where *p* and *r* are integers with $r \neq 0$.

One-sided Limits. These rules also follow for one-sided limits.

Limit Existence Theorem. $\lim_{x \to a} f(x) = L$ if and only if $\lim_{x \to a^-} f(x) = L = \lim_{x \to a^+} f(x)$. (*The left- and right-hand limits must both exist and be equal for the general limit to exist.*)

Note: This, along with one-sided limit laws, is helpful when one (or both) two-sided limits DNE.

Direct Substitution Property. If *f* is a polynomial, rational, exponential, or algebraic function, or is one of $\log_b(x)$, $\cos(x)$, or $\sin(x)$, and *a* is in the domain of *f*, then $\lim_{x \to a} f(x) = f(a)$. (*Just plug it in!*)

Simplification Property. If f(x) = g(x) when $x \neq a$, then $\lim_{x \to a} f(x)$ and $\lim_{x \to a} g(x)$ either both exist or both don't exist, and are equal provided they exist.

The Squeeze Theorem. (Section 2.6) If $f(x) \le g(x) \le h(x)$ when *x* is near *a* (except possibly at *a*) and

$$\lim_{x \to a} f(x) = \lim_{x \to a} h(x) = L,$$

then $\lim_{x \to a} g(x) = L$.