Math 135, Calculus 1, Fall 2020

10-02: Trig limits and the Squeeze Theorem

A. SOLVING LIMITS ALGEBRAICALLY

Last class, we reviewed the number of ways we can evaluate the limit $\lim_{x \to a} f(x)$:

- If we know the function f(x) is continuous at x = a, then the limit is simply f(a).
- If we have the *graph* of the function *f* , we can visually determine the limit.
- We can perform numerical calculations.
- We can use algebra.

The algebraic route is particularly useful if "evaluation" yields an indeterminant form:

$$\frac{0}{0}$$
, $\frac{\infty}{\infty}$, $\infty \cdot 0$, $\infty - \infty$

Some techniques we saw on 09-28 to deal with these:

- Limits as $x \to \pm \infty$: only the *highest powers of x matter*. The rest we can ignore.
- **0**/**0** : Try canceling a common factor from both the numerator and the denominator. *This may require you to factor polynomials, or expand functions.*
- Square roots and 0/0 : If we have square roots in the numerator or denominator, try multiplying the top and bottom by the *conjugate*.
- $\infty \infty$: Try combining the two terms and simplifying.

B. The Squeeze Theorem

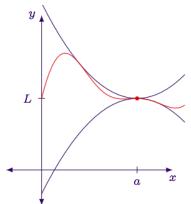
Today, we will use a new technique for when the above fail.

Theorem 1 (The Squeeze Theorem). Suppose that $f(x) \le g(x) \le h(x)$ when x is near a (except possibly *at* x = a), and that

$$\lim_{x \to a} f(x) = \lim_{x \to a} h(x) = L.$$

Then $\lim_{x \to a} g(x) = L$.

That is, if g(x) is bounded above and below by two functions that limit on the same value as $x \to a$, then g(x) also limits on that same value.



Example 2. Using the Squeeze Theorem, let's show that $\lim_{x\to 0} x^2 \sin(1/x) = 0$. Evaluating, we get $0 \cdot DNE$, which is unhelpful. However, we know the range of $\sin \theta$ is just [-1, 1], so this gives us bounds for $\sin(1/x)$:

$$-1 \leq \sin(1/x) \leq 1$$

Multiplying through by $x^2 > 0$ does not change the inequality signs, so we get

$$-x^2 \le x^2 \sin(1/x) \le x^2$$

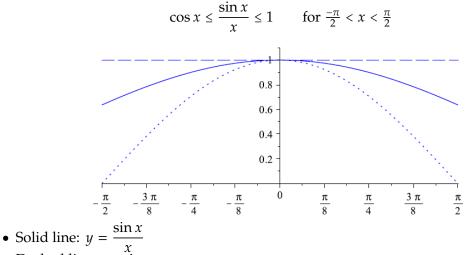
But now $\lim_{x\to 0} -x^2 = \lim_{x\to 0} x^2 = 0$, so the limit of the bounded function $\lim_{x\to 0} x^2 \sin(1/x) = 0$.

Exercise 1. Use the Squeeze Theorem to compute $\lim_{x \to \infty} \frac{\sin x}{x}$.

Two important trig limits are the following:

$$\lim_{x \to 0} \frac{\sin x}{x} = 1 \quad \text{and} \quad \lim_{x \to 0} \frac{1 - \cos x}{x} = 0.$$

Example 3. To prove the first one, we use the fact that



- Dashed line: y = 1
- Dotted line: $y = \cos x$

Since $\lim_{x \to 0} \cos x = \lim_{x \to 0} 1 = 1$, the Squeeze Theorem implies $\lim_{x \to 0} \frac{\sin x}{x} = 1$, as desired.

Exercise 2. Using the limit $\lim_{x\to 0} \frac{\sin x}{x} = 1$, show that $\lim_{x\to 0} \frac{1-\cos x}{x} = 0$. *Hint: Multiply the top and bottom by* $1 + \cos x$; *simplify; and then break the fraction into the product of two fractions, one of which is* $\frac{\sin x}{x}$.

Exercise 3. Evaluate $\lim_{x\to 0} \frac{\sin^2 x}{x^2}$. *Hint: the limit of a product equals the product of the limits.*

Exercise 4. Evaluate $\lim_{t\to 0} \frac{\sin(7t)}{t}$. *Hint: Make the substitution* x = 7t. *If* $t \to 0$, *what is x approaching? Use this substitution to rewrite the limit using only the variable x in a way so that* $\frac{\sin x}{x}$ *is present.*