Math 135, Calculus 1, Fall 2020

10-07: The Derivative and Graphs

Last time we introduced the **derivative** f'(a) of a function f(x) at the point x = a:

- the slope of the tangent line at x = a
- the instantaneous velocity at time x = a
- $\lim_{h \to 0} \frac{f(a+h) f(a)}{h}$

Exercise 1. Let $f(x) = 3x^2 - x$. Find f'(-2) by choosing the correct next step from each row below. In the third column, explain why this is the correct step, and what caused the error in the incorrect step.

Step 1.	$\lim_{h \to 0} \frac{f(-2+h) - f(-2)}{h}$	$\lim_{h \to -2} \frac{f(-2+h) - f(-2)}{h}$	
Step 2.	$\lim_{h \to 0} \frac{3(-2+h)^2 + 2 + h + 14}{h}$	$\lim_{h \to 0} \frac{3(-2+h)^2 + 2 - h - 14}{h}$	
Step 3.	$\lim_{h \to 0} \frac{3(4-4h+h^2)+2-h-14}{h}$	$\lim_{h \to 0} \frac{3(4+h^2) - 2 - h - 14}{h}$	
Step 4.	$\lim_{h \to 0} \frac{12 - 4h + h^2 + 2 - h - 14}{h}$	$\lim_{h \to 0} \frac{12 - 12h + 3h^2 + 2 - h - 14}{h}$	
Step 5.	$\lim_{h \to 0} \frac{-12h + 3h^2 - h}{h}$	$\lim_{h \to 0} \frac{3h^2 - 13h + 12}{h}$	
Step 6.	$\lim_{h \to 0} \frac{-12\not h + 3h^2 - h}{\not h}$	$\lim_{h \to 0} \frac{3h^2 - 13h}{h}$	
Step 7.	$\frac{3h^2 - 13h}{h}$	$\lim_{h \to 0} \frac{h(3h - 13)}{h}$	
Step 8.	$\lim_{h \to 0} (3h - 13)$	3h - 13h	
Step 9.	-10h	-13	

Exercise 2. Suppose that g(x) = |x - 3|. Find g'(2), g'(3), and g'(4). Draw a graph of g and try to make sense of your answers. *Hint: recall the definition of* |x - 3| *as a piecewise function. Where might your need to look at one-handed limits?*

B. DERIATIVE AS A FUNCTION

If we let *a* vary, the derivative f'(a) is a **new function**.

Definition 1. The **derivative** of f(x) is the function $f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h}$, with domain wherever this limit exists.

- f'(a) > 0 exactly when f(x) is **increasing** at x = a
- f'(a) < 0 exactly when f(x) is **decreasing** at x = a

Exercise 3. Suppose the following is the graph of the **derivative** g'(x) of some function g(x). Where is g(x) increasing? Decreasing? Constant?

Exercise 4. Suppose f(x) is the function with the following graph. Sketch the graph of f'(x).

