Math 135, Calculus 1, Fall 2020

10-07: The Derivative, Graphs, and First Rules

Recall the **derivative function** $f'(x)$ of a function $f(x)$ is defined to be

- the slope of the tangent line
- the instantaneous velocity ● lim $h\rightarrow 0$ $\frac{f(x+h)-f(x)}{h}$

A. Graphs of $f'(x)$

Exercise 1. Consider the function $f(x) = x^2 - x - 2$. We will construct the graph of the desiration function are maintained in the set derivative function one point at a time.

- (a) Go to the website <http://www.shodor.org/interactivate/activities/Derivate/>.
- (b) Enter the function $y = f(x)$ above. Use the tool to cacluate the slope of the tangent line at each of the points $x = -1$, 0, 1, 2, and 2.5. Enter these values in the table below:

(c) Now plot these points and connect them smoothly to estiamte a graph of $f'(x)$.

(d) What do you think the formula for this graph is?

Exercise 2. Use the limit definition of the derivative to compute $f'(x)$ for $f(x) = x^2 - x - 2$. Do your results match your results from Exercise 1?

$$
f'(x) = \lim_{h \to 0} \frac{f(x+h) - \tilde{f}(x)}{h} =
$$

Exercise 3. Desmos offers an interactive applet that gives a good visual and tactile experience of poroducing the derivative function point by point. Follow the link below and follow the instructions, using the function $f(x) = \sin x$.

<https://www.desmos.com/calculator/jlcpl1spy2>

In the space below, sketch the graphs of $f(x)$ and $f'(x)$. Do you recognize the graph of $f(x)$? $^{\prime}$ $'(x)?$

2

B. Differentiability

If the limit defining $f'(a)$ exists, we say f is **differentiable** at $x = a$.

Theorem 1. *If* $f(x)$ *is differentiable at* $x = a$ *, then it is also continuous there. However, the converse is not true: a function may be continuous at a point, but not differentiable there (e.g.* $f(x) = |x|$ *is continuous at* $x = 0$ *, but is not differentiable there*).

What might go wrong? Any of the things that make a limit not exist. In paticular:

- (a) the left-hand limit might not equal the right-hand limit.
- (b) the limit might be infinite.

Exercise 4. Sketch the graph of a continuous function that is differentiable everywhere **except**:

- at $x = 1$ because the limit DNE as in (a) above (the derivative from the left does not equal the derivative from the right)
- at $x = 4$ because the limit DNE as in (b) above (the derivative is infinite)

Notation 2. The derivative of a function $f(x)$ has a second notation, namely

$$
f'(x) = \frac{dy}{dx} \qquad \qquad f'(a) = \left. \frac{dy}{dx} \right|_{x=a}
$$

This alterantive notation $\frac{dy}{dx}$ is read as "the derivative of y with respect to x", and is called **Leibniz notation**. It reminds us that the derivative is the slope: **Leibniz notation**. It reminds us that the derivative is the slope:

$$
m \equiv \frac{\Delta y}{\Delta x} \qquad \text{so} \qquad f'(x) = \frac{dy}{dx}
$$

 $\frac{dX}{dx}$ Δx $\frac{dX}{dx}$ $\frac{dX}{dx}$ $\frac{dX}{dx}$ Leibniz notation also helps to represent taking the derivatives as an operation: the symbol $\frac{u}{dx}$ means "take the derivative with respect to x ".

Exercise 5. Use the limit definition of the derivative to prove that the derivative of a line is its slope:

$$
\frac{d}{dx}\left(mx+b\right) =
$$