Math 135, Calculus 1, Fall 2020

10-14: Product of Quotient Rules

Last week, we introduced the **derivative function** f'(x) of a function f(x), whose evaluation f'(a) at the point x = a is give by:

- the slope of the tangent line at x = a
- the instantaneous velocity at time x = a

On Monday, we covered algorithms to help us compute the derivatives of polynomials and exponential functions. Today, we'll tackle **products** and **quotients**

Theorem (Product Rule). *If* f(x) *and* g(x) *are differentiable functions, then so is their product* $f(x) \cdot g(x)$. *The derivative of the product is given by*

$$\frac{d}{dx}\Big(f(x)\cdot g(x)\Big) = f'(x)\cdot g(x) + f(x)\cdot g'(x).$$

Example 1 (Warning). The derivative of a product is **not** equal to the product of the derivatives: Consider the product $x \cdot x$. Then

$$\frac{d}{dx}(x) \cdot \frac{d}{dx}(x) = 1 \cdot 1 = 1$$

but instead

$$\frac{d}{dx}(x \cdot x) = \frac{d}{dx}(x) \cdot x + x \cdot \frac{d}{dx}(x) = 1 \cdot x + x \cdot 1 = 2x$$

which is what the **power rule** gives us for the derivative of $x \cdot x = x^2$.

Exercise 1. Use the Product Rule to find f'(x) when $f(x) = (3x^2 + 1)e^x$. Similify your answer.

Theorem (Quotient Rule). *If* f(x) *and* g(x) *are differentiable functions, then so is their quotient* f(x)/g(x) *whenever* $g(x) \neq 0$ *. The derivative of the quotient is given by*

$$\frac{d}{dx}\left(\frac{f(x)}{g(x)}\right) = \frac{f'(x)g(x) - f(x)g'(x)}{(g(x))^2}$$

Remark 2. The Quotient Rule can be derived from the product rule: Letting $Q(x) = \frac{f(x)}{g(x)}$, cross multiply the equation and differentiate both sides with respect to *x* using the Product Rule. Solving for Q'(x) leads to the above formula.

Exercise 2. Use the Quotient Rule to calculate the derivative of $\frac{1}{x^4}$ and check your answer against the result obtained from using the Power Rule.

Exercise 3. If $g(x) = \frac{3x+1}{2x-5}$, find a simplify g'(x).

Exercise 4. If $h(x) = \frac{e^x}{x^2 + 1}$, find and simplify h'(x).

Exercise 5. Suppose that f(3) = 5, f'(3) = -7, g(3) = 2, and g'(3) = 1/2. If $H(x) = \frac{f(x)}{xg(x)}$, find H'(3).