Math 135, Calculus 1, Fall 2020

10-19: The Chain Rule (Section 3.7)

Last week, we introduced the **derivative function** f'(x) of a function f(x), whose evaluation f'(a) at the point x = a is give by:

- the slope of the tangent line at x = a
- the instantaneous velocity at time x = a
- the instantaneous rate of change of f with respect to x

Today: Trig derivatives and the chain rule.

A. Trig Derivatives

Theorem 1. *If* x *is measured in radians, then*

$$\frac{d}{dx}(\sin x) = \cos x,$$
 $\frac{d}{dx}(\cos x) = -\sin x.$

The proof can be found in Worksheet 10-16.

Exercise 1. Use the quotient rule and the above results to prove that $\frac{d}{dx}(\cot x) = -\csc^2 x$.

B. CHAIN RULE

The chain rule gives us a way to compute the derivative of a **composite** of two functions.

Theorem 2. If O(x) and I(x) are differentiable functions, then so is the composite $O(I(x)) = (O \circ I)(x)$. Moreover,

$$\frac{d}{dx}\Big(O(I(x))\Big) = O'\big(I(x)\big) \cdot I'(x).$$

That is, "the derivative of the outside function **evaluated at the inside function**, times the derivative of the inside function".

Example 3. Let $h(x) = (x^4 + 1)^2$. The **inside function** is $I(x) = x^4 + 1$, as this is the **first** thing we do to evaluate this function. The **outside function** is $O(x) = x^2$, as this is the **second** thing we do to evaluate this function. Then h(x) = O(I(x)).

Since O'(x) = 2x and $I'(x) = 4x^3$, we have $O'(I(x)) = 2 \cdot (x^4 + 1)$, and the Chain Rule says that

$$h'(x) = O'(I(x)) \cdot I'(x) = 2(x^4 + 1) \cdot 4x^3 = 8x^7 + 8x^3.$$

To check this, we can first exapnd h(x) and compute h'(x) via the Power Rule:

$$h(x) = (x^4 + 1)^2 = x^8 + 2x^4 + 1,$$
 $h'(x) = 8x^7 + 8x^3.$

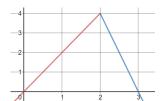
Exercise 2. Let $f(x) = \sin(2x)$.

(a) Use the double-angle formula sin(2x) = 2 sin x cos x to compute f'(x) using the product rule.

(b) Use the Chain Rule to directly compute f'(x). (What is the inside function?) Outside function?)

Exercise 3. Let f(x) and g(x) be two functions. Certain values of f(x) and f'(x) are given in the table below, and the graph of g(x) is as shown.

$$\begin{array}{c|cccc} x & 1 & 2 & 3 \\ \hline f(x) & 3 & 2 & 1 \\ \hline f'(x) & 4 & 5 & 6 \\ \end{array}$$



(a) Let h(x) = g(f(x)). Find h'(3).

Computation. The Chain Rule says that $h'(x) = g'(f(x)) \cdot f'(x)$, so

$$h'(3) = g'(f(3)) \cdot f'(3) = g'(1) \cdot 6 = 2 \cdot 6 = 12.$$

(b) Let k(x) = f(g(x)). Find k'(1).

Exercise 4. If $F(x) = \sqrt{x^4 + 3}$, use the Chain Rule to find and simplify F'(x).

Exercise 5. (a) If
$$y = e^{x^2}$$
, compute $\frac{dy}{dx}$.

(b) If
$$z = e^{\tan t}$$
, compute $\frac{dz}{dt}$.

You may need to use the Chain Rule multiple times:

Exercise 6. Find and simplify
$$G'(x)$$
 if $G(x) = \sin\left(\sqrt{x^2 + 2}\right) + e^{\cos(4x)}$.