Math 135, Calculus 1, Fall 2020

11-09: Extreme Values (Section 4.2)

The **derivative** $f'(x)$ of a function $y = f(x)$ gives:

- the slope of the tangent line
- the instantaneous rate of change of y with respect to x

Today, we will begin our discussion of the application of the derivative to **optimization** problems, finding the maximum or minimum values of a function.

A. Local Extrema

Definition 1. We say that $f(c)$ is a

- **local minimum** occuring at $x = c$ if $f(c) \le f(x)$ for "all x near c "
- **local maximum** occuring at $x = c$ if $f(c) \ge f(x)$ for "all x near c "

We will spend a good amount of time in the future **finding** and **classifying** these local extrema.

Theorem 2 (Fermat's Theorem on Local Extrema). If $f(c)$ is a local max or min, then c is a critical *point of* f : *either* $f'(c) = 0$ *or* $f'(c)$ *DNE.*

Thus we should think of **critical points** as *potential local extrema*.

Exercise 1. Find the critical points and the associated function values for:

(a) $f(x) = x^2 - 2x + 4$

(b)
$$
f(x) = x^{-1} - x^{-2}
$$

(c)
$$
f(x) = |2x + 1|
$$

B. Absolute Extrema

Definition 3. Let f be a function defined on an interval I , and let a be in I . We say that $f(a)$ is the

- **absolute minimum** of f on I if $f(a) \leq f(x)$ for all x in I
- **absolute maximum** of f on I if $f(a) \ge f(x)$ for all x in I

Example 4. Not every function has an absolute max or min:

- The function $f(x) = x$ on $(-\infty, \infty)$ increases without bound as $x \to \infty$, and descreases without bound as $x \rightarrow -\infty$
- If 𝑓 is **discontinuous** or defined on an **open interval**, it need not achieve a max value or a min value

Theorem 5 (Extreme Value Theorem on a Closed Interval). If f is continous on closed interval $I = [a, b]$, *that* 𝑓 *acheives both an absolute max and an absolute min on* [𝑎, 𝑏]*. Moreover, these occur at either critical points or the endpoints a, b.*

Exercise 2. Find the absolute extreme values of $f(x)$ on the interval given by comparing values at the critical points and endpoints:

(a)
$$
f(x) = x^2 - 2x + 4
$$
, $I = [0, 2]$

(b)
$$
f(x) = x^{-1} - x^{-2}
$$
, $I = [0, 4]$

(c)
$$
f(x) = |2x + 1|, I = [1, 3]
$$

Theorem 6 (Rolle's Theorem). *Suppose* f is continuous on [a, b] and differentiable on (a, b) . If $f(a) = f(b)$, *then there exists a number c between a and b such that* $f'(c) = 0$.

Exercise 3. Verify Rolle's Theorem for $f(x) = sin(x)$ on $[\pi/4, 3\pi/4]$: check that $f(a) = f(b)$, and find the value *c* in $(\pi/4, 3\pi/4)$ such that $f'(c) = 0$.

Exercise 4. Use Rolle's Theorem to prove that $f(x) = x^3 + 3x^2 + 6x$ has precisely one real root: (a) Find points $x = a$ and $x = b$ such that $f(a) < 0$ and $f(b) > 0$.

- (b) By the **Intermediate Value Theorem**, there thus exists some point c in (a, b) with $f(c) = 0$, so $f(x)$ has at least one real root. (We do not need to find the exact value of $x = c$.)
- (c) By Rolle's Theorem, what would have to be true about f if it had another root at $x = d$?

(d) Why is the above not possible?

Exercise 5. Find the absolute extreme values of $f(x)$ on the interval given by comparing values at the critical points and endpoints:

(a)
$$
f(x) = \frac{x^2 + 1}{x - 4}, I = [5, 6].
$$

(b) $f(x) = x + \sin x, I = [0, 2\pi]$

(c)
$$
f(x) = \frac{\ln x}{x}, I = [1, 3]
$$