Math 135, Calculus 1, Fall 2020

11-09: Extreme Values (Section 4.2)

The **derivative** f'(x) of a function y = f(x) gives:

- the slope of the tangent line
- the instantaneous rate of change of *y* with respect to *x*

Today, we will begin our discussion of the application of the derivative to **optimization** problems, finding the maximum or minimum values of a function.

A. LOCAL EXTREMA

Definition 1. We say that f(c) is a

- local minimum occuring at x = c if $f(c) \le f(x)$ for "all x near c"
- local maximum occuring at x = c if $f(c) \ge f(x)$ for "all x near c"

We will spend a good amount of time in the future finding and classifying these local extrema.

Theorem 2 (Fermat's Theorem on Local Extrema). If f(c) is a local max or min, then c is a critical *point* of f: either f'(c) = 0 or f'(c) DNE.

Thus we should think of critical points as potential local extrema.

Exercise 1. Find the critical points and the associated function values for:

(a) $f(x) = x^2 - 2x + 4$

(b)
$$f(x) = x^{-1} - x^{-2}$$

(c)
$$f(x) = |2x + 1|$$

B. Absolute Extrema

Definition 3. Let *f* be a function defined on an interval *I*, and let *a* be in *I*. We say that f(a) is the

- **absolute minimum** of f on I if $f(a) \le f(x)$ for all x in I
- **absolute maximum** of f on I if $f(a) \ge f(x)$ for all x in I

Example 4. Not every function has an absolute max or min:

- The function f(x) = x on $(-\infty, \infty)$ increases without bound as $x \to \infty$, and descreases without bound as $x \to -\infty$
- If *f* is **discontinuous** or defined on an **open interval**, it need not achieve a max value or a min value

Theorem 5 (Extreme Value Theorem on a Closed Interval). If f is continous on closed interval I = [a, b], that f achieves both an absolute max and an absolute min on [a, b]. Moreover, these occur at either critical points or the endpoints a, b.

Exercise 2. Find the absolute extreme values of f(x) on the interval given by comparing values at the critical points and endpoints:

(a)
$$f(x) = x^2 - 2x + 4$$
, $I = [0, 2]$

(b)
$$f(x) = x^{-1} - x^{-2}$$
, $I = [0, 4]$

(c) f(x) = |2x + 1|, I = [1, 3]

Theorem 6 (Rolle's Theorem). Suppose f is continuous on [a, b] and differentiable on (a, b). If f(a) = f(b), then there exists a number c between a and b such that f'(c) = 0.

Exercise 3. Verify Rolle's Theorem for $f(x) = \sin(x)$ on $[\pi/4, 3\pi/4]$: check that f(a) = f(b), and find the value *c* in $(\pi/4, 3\pi/4)$ such that f'(c) = 0.

Exercise 4. Use Rolle's Theorem to prove that $f(x) = x^3 + 3x^2 + 6x$ has precisely one real root: (a) Find points x = a and x = b such that f(a) < 0 and f(b) > 0.

- (b) By the **Intermediate Value Theorem**, there thus exists some point *c* in (*a*, *b*) with f(c) = 0, so f(x) has at least one real root. (We do not need to find the exact value of x = c.)
- (c) By Rolle's Theorem, what would have to be true about f if it had another root at x = d?

(d) Why is the above not possible?

Exercise 5. Find the absolute extreme values of f(x) on the interval given by comparing values at the critical points and endpoints:

(a)
$$f(x) = \frac{x^2 + 1}{x - 4}, I = [5, 6].$$

(b) $f(x) = x + \sin x$, $I = [0, 2\pi]$

(c)
$$f(x) = \frac{\ln x}{x}, I = [1,3]$$