Math 135, Calculus 1, Fall 2020

09-14: Exponentials and the Logarithm (Section 1.6)

A. Exponential Functions and the Logarithm

Exponential functions are of the form $f(x) = b^x$ with b > 0. If b > 1, f(x) is *increasing*, while if 0 < b < 1, f(x) is *decreasing*.

Using the definition of the inverse, we have:

 $y = b^x$ exactly when $\log_b(y) = x$

Exercise 2. Use the above to compute $b^{\log_b x}$ and $\log_b(b^x)$. (Hint: **inverses!** The answer should not be complicated.)

$$(1) \text{ Inverses: The answer should not be complicated.})$$

$$J = L^{(1)} \iff \log_{b}(y) = \log_{b}(x) \iff J = X$$

$$\log_{b}(b^{*}) = J \iff L^{*} = b^{*} \iff J = [X]$$

Exercise 3. Compute $\log_3(27)$. (Hint: let $x = \log_3(27)$). Now apply the above framed box.)

 $x = log_3(21) \iff 27 = 3^{\times} \iff$

Euler's number is the irrational number $e \approx 2.718$. The associated exponential e^x has good properties (to be discovered later). The associated logarithm $\log_e(x) = \ln(x)$ is called the **natural logarithm**.

Exercise 4. Compute the domain and range of ln(x).

$$\frac{1}{(x)} = \frac{1}{(0,\infty)} = \frac{$$

Exercise 5. Use the laws of exponents to compute the following without a calculator; all answers are integers. (Hint: use the framed box on the previous page.)

1696(1)=x (3) 1=6 (2) [X=0 (v) m(e) $(n(e) = \times (=) e = e^{\times} (=)$ Exercise 6. Suppose a bacteria population doubles in size ever 30 minutes. Then, if we started outwith 1000 bacteria, we can model this population by the function $Q(t) = 1000 \cdot (2)^{t/30}.$ y)=109, 124 After how many hours will there be 5000 bacteria? 5000 - 1000 (2) $5 = 2^{\frac{1}{30}} (=) \log_2(5) = \frac{1}{30} (=) \log_2(5) (=) \log_2(5) = \frac{1}{30} (=) \log_2(5) (=)$