
Math 135, Calculus 1, Fall 2020
09-14: Exponentials and the Logarithm (Section 1.6)

A. Exponential Functions and the Logarithm
Exponential functions are of the form 5 (G) = 1G with 1 > 0. If 1 > 1, 5 (G) is increasing, while if

0 < 1 < 1, 5 (G) is decreasing.

Exponential functions are 1-1, so 1G = 1C exactly when G = C.

Exercise 1. Suppose 3G+1 =

(
1
3

)2G

. Solve for G.

The inverse of the exponential function 5 (G) = 1G is called the logarithm with base 1, denoted
log1(G).

Using the definition of the inverse, we have:

H = 1G exactly when log1(H) = G

Exercise 2. Use the above to compute 1log1 G and log1(1G).
(Hint: inverses! The answer should not be complicated.)
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Exercise 3. Compute log3(27). (Hint: let G = log3(27). Now apply the above framed box.)

Euler’s number is the irrational number 4 ≈ 2.718. The associated exponential 4G has good
properties (to be discovered later). The associated logarithm log4(G) = ln(G) is called the natural
logarithm.

Exercise 4. Compute the domain and range of ln(G).

Exercise 5. Use the laws of exponents to compute the following without a calculator; all answers
are integers. (Hint: use the framed box on the previous page.)

(a) log1(1)

(b) ln(4)

(c) log6(9) + log6(4)

Exercise 6. Suppose a bacteria population doubles in size ever 30 minutes. Then, if we started out
with 1000 bacteria, we can model this population by the function

&(C) = 1000 ⋅ (2)C/30.

After how many hours will there be 5000 bacteria?
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