Math 135, Calculus 1, Fall 2020
09-14: Exponentials and the Logarithm (Section 1.6)

A. EXPONENTIAL FUNCTIONS AND THE LOGARITHM

Exponential functions are of the form f(x) = b* with b > 0. If b > 1, f(x) is increasing, while if
0<b <1, f(x)is decreasing.
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Exponential functions are 1-1, so b* = b! exactly when x = t. ,2
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The inverse of the exponential funct1on f(x) = b" is called the logarithm with base b, denoted
log, (x).

Using the definition of the inverse, we have:
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Exercise 2. Use the above to compute b'°% * and log, (b*).

(Hint: 1nversesl)The answer should not be complicated.)
: \ = <]
D - ( aYa %’S 08],(\5 ,-\05), ’A é > j

ey, W)=y = P & y=ix]


Peter

Peter

Peter

Peter

Peter

Peter

Peter


2

Exercise 3. Compute log,(27). (Hint: let x = log,(27). Now apply the above framed box.)

fv(cSSQ:h D! 27) = ;X &> R C;

Euler’s number is the irrational number ¢ ~ 2.718. The associated exponential e* has good
properties (to be discovered later). The associated logarithm log,(x) = In(x) is called the natural

logarithm.
Exercise 4. Compute fhe domain and range of In(x).
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Exercise 5. Use the laws of exponents to compute the following without a calculator; all answers
are integers. (Hint: use the framed box on the previous page.)
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Exercise 6. Suppose a bacteria population doubles in size ever 30 minutes. Then if we-started-ott
with 1000 bacteria, we can model this population by the function C_) \\
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Q(t) = 1000 - (2)!/%0.

After how many hours will there be 5000 bacteria? \D D (7& g \o ‘3 \3\ \ o 3 L( \
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