Math 135, Calculus 1, Fall 2020

09-16: Limits, Velocity, and Tangent Lines

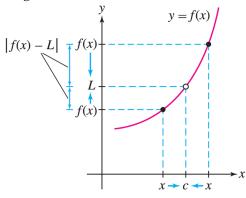
A. LIMITS

Definition. Given a function f(x), we say that *the limit of* f(x) *as x approaches c is equal to the number* L if |f(x) - L| can be made arbitrarily small by taking *x* sufficiently close (but not equal) tto *c*.

In this case, we write

$$\lim_{x \to \infty} f(x) = L$$

and say "f(x) approaches *L* as *x* goes to *c*".

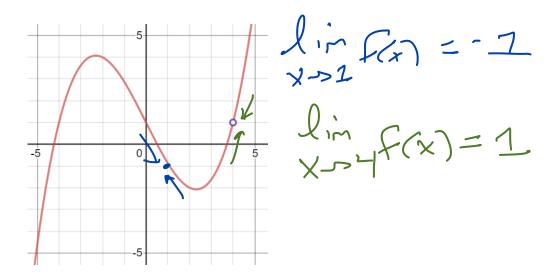


Example. On Wednesday, in Exercise 2, we numerically computed/estimated that

$$\lim_{t \to 1} \frac{t^2 + 4t - 5}{t - 1} = 6$$

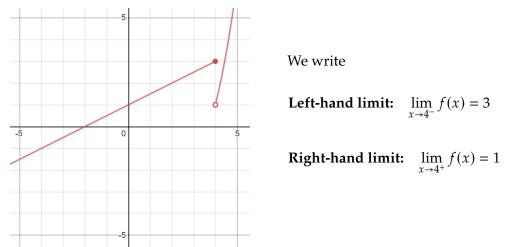
Note that, even though $\frac{t^2+4t-5}{t-1}$ is **not defined** at t = 1 (can't divide by 0), *the limit still exists*. We only care about the value that the function **approaches** as we get close to the point in question. The actual value of the function (or lack thereof) at the destination point is irrelevant.

Exercise 1. Using the graph of f(x) below, compute $\lim_{x \to 1} f(x)$ and $\lim_{x \to 4} f(x)$.



A.1. **One-sided limits.** Consider the function below. As *x* gets closer to 4, the function values approach two *different* quantities, depending on which direction *x* approaches 4 from:

- the **left-hand limit** at x = 4 (approaching from the left, x < 4) is 3
- the **right-hand limit** at x = 4 (appraoching from the right, x > 4) is 1.



In this case, the limit $\lim_{x\to 4} f(x)$ does not exist, since the left- and right-hand limits do not agree.

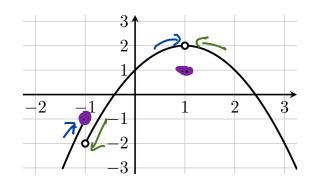
$$\lim_{x \to a} f(x) = L \text{ if and only if } \lim_{x \to a^-} f(x) = L \text{ and } \lim_{x \to a^+} f(x) = L.$$

Exercise 2. Evaluate each of the following using the graph of g(x) shown below.

(a)
$$\lim_{x \to -1^{-}} g(x) = 1$$

(b) $\lim_{x \to -1^{+}} g(x) = -2$

- (c) $\lim_{x \to -1} g(x)$ DNE
- (d) g(-1) = -
- (e) $\lim_{x \to 1^{-}} g(x) = 2$
- (f) $\lim_{x \to 1^+} g(x) = 25$
- (g) $\lim_{x \to 1} g(x) = Z$
- (h) g(1) = 1



A.2. **Infinite Limits.** It may happen that as *x* approaches the value *a*, the function value increases (or decreases) without bound. In these cases, we say that the limit is ∞ (or $-\infty$).

(Warning: These limits still do not exist. However, we can be precise about how they don't exist.)

Exercise 3. Compute each of the following limits. It may help to think qualitatively, e.g. "What happens as x is very close, but slightly smaller, than 3?"

(a)
$$\lim_{x\to 3^+} \frac{1}{x-3}$$
 When $x>3$, $x-3>0$ so denominator is
going to 0 through positive numbers, so $\rightarrow 1+\infty$
(b) $\lim_{x\to 3^+} \frac{1}{x-3}$ When $x<3$, $x-3<0$, so denominator is going to 0
through numbers, so $\rightarrow -\infty$
(c) $\lim_{x\to 3} \frac{1}{x-3}$ DNE ($\lim_{x\to 3^-} \frac{1}{x}$ C $\lim_{x\to 3^+} \frac{1}{x-3}$)
(d) $\lim_{x\to 0^-} \ln x$
Hence $\sum_{x\to 0^+} \ln x$
(d) $\lim_{x\to 0^-} \ln x$
(finit DNE, so
this limit DNE.