Math 135, Calculus 1, Fall 2020
10-02: Trig limits and the Squeeze Theorem

A. SOLVING LIMITS ALGEBRAICALLY

Last class, we reviewed the number of ways we can evaluate the limit lim f(x):
X—=a

o If we know the function f(x) is continuous at x = a, then the limit is simply f(a).
o If we have the graph of the function f, we can visually determine the limit.

e We can perform numerical calculations.

e We can use algebra.

The algebraic route is particularly useful if “evaluation” yields an indeterminant form:
0 00

v = 00-0, o0-o00
Some techniques we saw on 09-28 to deal with these:
o Limits as x — oo: only the highest powers of x matter. The rest we can ignore.
¢ 0/0: Try canceling a common factor from both the numerator and the denominator.
This may require you to factor polynomials, or expand functions.
e Square roots and 0/0 : If we have square roots in the numerator or denominator, try
multiplying the top and bottom by the conjugate.

e oo — oco: Try combining the two terms and simplifying.

B. THE SQUEEZE THEOREM
Today, we will use a new technique for when the above fail.

Theorem 1 (The Squeeze Theorem). Suppose that f(x) < g(x) < h(x) when x is near a (except possibly

at x = a), and that

lim f(x) =lim h(x) = L.
X—a X—>a
Then lim g(x) = L.

That is, if g(x) is bounded above and below by two functions that limit on the same value as x — a, then

g (x) also limits on that same value.
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Example 2. Using the Squeeze Theorem, let’s show that lir% x?sin(1/x) = 0. Evaluating, we get
xX—

0- DNE, which is unhelpful. However, we know the range of sin 0 is just [-1, 1], so this gives us

bounds for sin(1/x):
-1 <sin(1/x) <1

Multiplying through by x? > 0 does not change the inequality signs, so we get
—x? < x*sin(1/x) < x?

But now hr% x? = hr% x? = 0, so the limit of the bounded function 11rr(1] x%sin(1/x) =
X = X =
sin x
Exercise 1. Use the Squeeze Theorem to compute lim —~
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Two important trig limits are the following;:
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Example 3. To prove the first one, we use the fact that

sin x
cosx < —— <1 for =X <x<2
X
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ro| = 4

sin x

e Solid line: y =
e Dashed line: y = 1
¢ Dotted line: y = cos x

. . . . . .. sinx .
Since hn% cosx = hn% 1 =1, the Squeeze Theorem implies hn% —— =1, as desired.
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Exercise 2. Using the limit lim ﬂ =1, show that hm

x—0

Hint: Multiply the top and bottom by 1 + cos x; simplify; and then break the fraction into the product of two
sin x 2
=2\n X

fractions, one of which is
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Exercise 3. Evaluate lim .
x—0 x2

Hint: the limit of a product equals the product of the limjs.
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Exercise 4. Evaluate lirr01
t—
Hint: Make the substitution x = 7t. If t - 0, what is x approaching? Use this substitution to rewrite the

limit using only the variable x in a way so that _n Zis present. ‘,Q . 5;,\ ( ) ’k)
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