Math 135, Calculus 1, Fall 2020

10-02: Trig limits and the Squeeze Theorem

A. Solving limits algebraically

Last class, we reviewed the number of ways we can evaluate the limit lim $\lim_{x \to a} f(x)$:

- If we know the function $f(x)$ is continuous at $x = a$, then the limit is simply $f(a)$.
- If we have the *graph* of the function f, we can visually determine the limit.
- We can perform numerical calculations.
- We can use algebra.

The algebraic route is particularly useful if "evaluation" yields an **indeterminant form**:

$$
\frac{0}{0}, \quad \frac{\infty}{\infty}, \quad \infty \cdot 0, \quad \infty - \infty
$$

Some techniques we saw on 09-28 to deal with these:

- **Limits as ^x** [→] **±∞∶** only the *highest powers of* 𝑥 *matter*. The rest we can ignore.
- **0**/**0** ∶ Try canceling a common factor from both the numerator and the denominator. *This may require you to factor polynomials, or expand functions.*
- **Square roots and 0**/**0** ∶ If we have square roots in the numerator or denominator, try multiplying the top and bottom by the *conjugate*.
- **∞ − ∞∶** Try combining the two terms and simplifying.

B. The Soueeze Theorem

Today, we will use a new technique for when the above fail.

Theorem 1 (The Squeeze Theorem). *Suppose that* $f(x) \leq g(x) \leq h(x)$ *when* x *is near* a (except possibly $at x = a$ *)*, and that

$$
\lim_{x \to a} f(x) = \lim_{x \to a} h(x) = L.
$$

Then lim $\lim_{x \to a} g(x) = L.$

That is, if $g(x)$ *is bounded above and below by two functions that limit on the same value as* $x \rightarrow a$ *, then* $g(x)$ also limits on that same value.

Example 2. Using the Squeeze Theorem, let's show that $\lim_{x\to 0} x$ 0 ⋅ *DNE*, which is unhelpful. However, we know the range of sin θ is just [−1, 1], so this gives us $x^2 \sin(1/x) = 0$. Evaluating, we get bounds for $sin(1/x)$:

$$
-1 \leq \sin(1/x) \leq 1
$$

Multiplying through by $x^2 > 0$ does not change the inequality signs, so we get

$$
-x^2 \le x^2 \sin(1/x) \le x^2
$$

But now lim $\lim_{x\to 0} -x^2 = \lim_{x\to 0}$ $\lim_{x\to 0} x^2 = 0$, so the limit of the bounded function $\lim_{x\to 0}$ $x\rightarrow0$ $2 \sin(1/x) = 0.$

Exercise 1. Use the Squeeze Theorem to compute $\lim_{x \to \infty} \frac{\sin x}{x}$.

 $x \rightarrow \infty$ x $l_{x,y} = \frac{1}{x}$ = $0 = \frac{ln(x)}{x}$ /x $\frac{1}{x}$ Syverze The

Two important trig limits are the following:

$$
\lim_{x \to 0} \frac{\sin x}{x} = 1 \quad \text{and} \quad \lim_{x \to 0} \frac{1 - \cos x}{x} = 0.
$$

Example 3. To prove the first one, we use the fact that

-
- Dashed line: $y = 1$ • Dotted line: $y = \cos x$

Since lim $\lim_{x\to 0} \cos x = \lim_{x\to 0}$ $1 = 1$, the Squeeze Theorem implies lim $x\rightarrow 0$ $\frac{\sin x}{x}$ = 1, as desired.

Exercise 2. Using the limit
$$
\lim_{x \to 0} \frac{\sin x}{x} = 1
$$
, show that $\lim_{x \to 0} \frac{1 - \cos x}{x} = 0$.
\nHint: Multiply the top and both by 1 + cos x; simplify, and then break the fraction into the product of two fractions, one of which is $\frac{\sin x}{x}$.
\n
$$
\mathcal{Q}_{1, \text{min}} \left\{ \frac{-\cos(x)}{x} \cdot \frac{\vec{r}(1 + \cos(x))}{(1 + \cos(x))} \right\} = \mathcal{Q}_{1, \text{min}} \left\{ \frac{-\cos(x)}{x} \cdot \frac{\vec{r}(1 + \cos(x))}{(1 + \cos(x))} \right\} = \mathcal{Q}_{1, \text{min}} \left\{ \frac{-\cos(x)}{x} \right\} = \mathcal{Q}_{1, \text{min}} \left\{ \frac{-\cos
$$

3

Exercise 4. Evaluate lim t→0
11ti $\frac{\sin(7t)}{t}$. *Hint: Make the substitution* $x = 7t$ *. If* $t \to 0$ *, what is x* approaching? Use this substitution to rewrite the
 $\sin x$ *limit using only the variable* x *in a way so that* $\frac{\sin x}{x}$ *is present.*

 $=$). lin $\frac{snx}{x}$

 \leq ?

$$
t \rightarrow 0 \Rightarrow 7t \Rightarrow x \rightarrow 5
$$

\n
$$
s \sin(7t) = \sin(x)
$$

\n
$$
-t = \frac{x}{7}
$$