Math 135, Calculus 1, Fall 2020

10-19: The Chain Rule (Section 3.7)

Last week, we introduced the **derivative function** f'(x) of a function f(x), whose evaluation f'(a) at the point x = a is give by:

- the slope of the tangent line at x = a
- the instantaneous velocity at time x = a
- the instantaneous rate of change of *f* with respect to *x*

Today: Trig derivatives and the chain rule.

A. TRIG DERIVATIVES

Theorem 1. *If x is measured in radians, then*

$$\frac{d}{dx}(\sin x) = \cos x, \qquad \qquad \frac{d}{dx}(\cos x) = -\sin x.$$

The proof can be found in Worksheet 10-16.

Exercise 1. Use the quotient rule and the above results to prove that
$$\frac{d}{dx}(\cot x) = -\csc^2 x$$
.

$$\frac{d}{dx}\left(\frac{\cos x}{\sin x}\right) = \frac{d}{dx}\left(\frac{\cos x}{\sin x} - \frac{\cos x}{\sin x} - \frac{d}{\cos x}\right)$$

$$= \frac{\sin x \cdot \sin x - \cos x \cdot \cos x}{\sin^2 x} = \frac{-\left(\sin^2 x + \cos^2 x\right)}{\sin^2 x}$$

$$= \frac{-1}{\sin^2 x}$$

$$= \left[-\csc^2 x\right]$$

B. CHAIN RULE

The chain rule gives us a way to compute the derivative of a **composite** of two functions.

Theorem 2. If O(x) and I(x) are differentiable functions, then so is the composite $O(I(x)) = (O \circ I)(x)$. *Moreover,*

$$\frac{d}{dx}\Big(O(I(x))\Big) = O'\big(I(x)\big) \cdot I'(x).$$

That is, "the derivative of the outside function **evaluated at the inside function**, times the derivative of the inside function".

Example 3. Let $h(x) = (x^4 + 1)^2$. The **inside function** is $I(x) = x^4 + 1$, as this is the **first** thing we do to evaluate this function. The **outside function** is $O(x) = x^2$, as this is the **second** thing we do to evaluate this function. Then h(x) = O(I(x)).

Since O'(x) = 2x and $I'(x) = 4x^3$, we have $O'(I(x)) = 2 \cdot (x^4 + 1)$, and the Chain Rule says that

$$h'(x) = O'(I(x)) \cdot I'(x) = 2(x^4 + 1) \cdot 4x^3 = 8x^7 + 8x^3.$$

To check this, we can first exapnd h(x) and compute h'(x) via the Power Rule:

$$h(x) = (x^4 + 1)^2 = x^8 + 2x^4 + 1,$$
 $h'(x) = 8x^7 + 8x^3.$

Exercise 2. Let $f(x) = \sin(2x)$.

(a) Use the double-angle formula sin(2x) = 2 sin x cos x to compute f'(x) using the product rule.

$$\frac{d}{dx} \left(2\sin x \cos x \right)^{2} = \frac{d}{dx} \left(2\sin x \right) \cdot \cos x + \left(2\sin x \right) \frac{d}{dx} \left(\cos x \right)$$
$$= 2\cos x \cos x - 2\sin x \sin x = 2\left(\cos^{2} x - \sin^{2} x \right)$$
$$= 2\cos \left(2x \right)$$

(b) Use the Chain Rule to directly compute f'(x). (What is the inside function? Outside function?)

inside:
$$2x$$

outside: $sin(x)$
 $dx (sin(2x)) = cos(2x) \cdot \frac{2}{2x}(2x) = cos(2x) \cdot 2/\sqrt{2x}$

(a) Let h(x) = g(f(x)). Find h'(3).

Computation. The Chain Rule says that
$$h'(x) = g'(f(x)) \cdot f'(x)$$
, so
 $h'(3) = g'(f(3)) \cdot f'(3) = g'(1) \cdot 6 = 2 \cdot 6 = 12.$

(b) Let
$$k(x) = f(g(x))$$
. Find $k'(1)$.

$$k'(x) = f'(g(x)) \cdot g'(x)$$

 $k'(x) = f'(g(x)) \cdot g'(x)$

Exercise 4. If $F(x) = \sqrt{x^4 + 3}$, use the Chain Rule to find and simplify F'(x).

$$F(x) = \frac{1}{2\sqrt{x^{4}+3}} \cdot \frac{2}{\sqrt{x}(x^{4}+3)}$$

= $\frac{4x^{3}}{\sqrt{x^{4}+3}}$
= $\frac{2x^{3}}{\sqrt{x^{4}+3}}$

Exercise 5. (a) If
$$y = e^{x^2}$$
, compute $\frac{dy}{dx}$.
outside : $J = e^{t}$
usuale : $t = x^2$
 $\frac{dy}{dx} = \frac{dy}{dt} \frac{dt}{dx} = (e^{t}) \cdot (2x) = e^{t} \cdot 2x$

(b) If
$$z = e^{\tan t}$$
, compute $\frac{dz}{dt}$.
outside : e^{x}
inside : $\tan(t)$
 $dz = (\tan t)$
 $dz = (\tan t)$
 $dz = e^{x}$
 $dz =$

You may need to use the Chain Rule multiple times:

Exercise 6. Find and simplify
$$G'(x)$$
 if $G(x) = \sin(\sqrt{x^2 + 2}) + e^{\cos(4x)}$.

$$G'(x) = \cos(\sqrt{x^2 + 2}) \cdot \frac{1}{2\sqrt{x^2 + 2}} + e^{\cos(4x)} \cdot (-\sin(4x)) \cdot \frac{2}{2\sqrt{x^2 + 2}} + e^{\cos(4x)} \cdot (-\sin(4x)) \cdot \frac{2}{2\sqrt{x^2 + 2}} + e^{\cos(4x)} + e^{\cos(4x)} \cdot (-\sin(4x)) \cdot \frac{2}{2\sqrt{x^2 + 2}} + e^{\cos(4x)} + e^{\cos(4x)} \cdot (-\sin(4x)) \cdot \frac{2}{2\sqrt{x^2 + 2}} + e^{\cos(4x)} + e^{\cos(4x)} + e^{\cos(4x)} \cdot (-\sin(4x)) \cdot \frac{2}{2\sqrt{x^2 + 2}} + e^{\cos(4x)} + e^{\cos(4x)} + e^{\cos(4x)} \cdot (-\sin(4x)) \cdot \frac{2}{2\sqrt{x^2 + 2}} + e^{\cos(4x)} + e^{\cos(4x)$$