Math 135, Calculus 1, Fall 2020

10-22: Implicit Differentiation (Section 3.8)
The derivative f'(x) of a function f(x) gives:

e the slope of the tangent line
e the instantaneous velocity
e the instantaneous rate of change

A. CHAIN RULE

The chain rule gives us a way to compute the derivative of a composite of two functions.

Theorem. If O(x) and I(x) are differentiable functions, then so is the composite O(I(x)) = (O o I)(x).
Moreover,

%(O(I(x))) = 0'(I(x)) - I'(x).

Exercise 1. Compute - sm (e‘/_) )
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B. ImpLICIT DIFFERENTIATION
If y and x are related not by a function, but by a general equation such as

y4+xy=x3—x+2,

—y, the slope of the tangent line at a point.

dx

we should still be able to compute the function

y
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Example 1. To compute % for x 42 +y? = 2x, we take the derivative of both sides of the equation

dx

with respect to x:
d, , 5 d
ST y) = - (2x)
d o
2x + a(y )—2

To compute %(yz), we use the Chain Rule: we think of y as representing a function y = y(x) of x,
and then the chain rule says

d
L0 = @D =2y ) =2y

All together, we have
2+ 2y =
T T
. dy .
and solving for P (and assuming y # 0) we get
dy _1-x
dx y
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Exercise 2. Use the Product Rule to compute a(xy).
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Exercise 3. Use the Quotient Rule to compute P (%)
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Exercise 4. Compute —y if sin(xy) = y>.
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Exercise 5. Compute T e¥ +e¥ =

9%[24()\ %(X‘)\ 0
ax&ﬁ "\ Z\:}«\*X 3

Ao
& G\D"i%% =T A X

Lfkefi
—_— - /5
> S e

Exercise 6. Find the slope of the tangent line to the graph of e sin(x) = 1 at (7/2,0).
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