Math 135, Calculus 1, Fall 2020

10-22: Implicit Differentiation (Section 3.8)

The **derivative** f'(x) of a function f(x) gives:

- the slope of the tangent line
- the instantaneous velocity
- the instantaneous rate of change

A. IMPLICIT DIFFERENTIATION

If *y* and *x* are related not by a function, but by a general equation

$$F(x,y) = k$$

we can compute the derivative $\frac{dy}{dx}$, the slope of the tangent line at a point, using **implicit differentiation**.

Exercise 1. Compute
$$\frac{dy}{dx}$$
 if $x^2 - y^2 + 2xy = 5$.
 $\frac{1}{2} \sqrt{(x)^2 + \frac{1}{2} \sqrt{(2x)^2 + \frac{1}{2} \sqrt{(2x)^2 + \frac{1}{2} \sqrt{(x)^2 + \frac{1$

We can use implicit differentiation to compute the derivatives of **inverse functions**. Recall that a function f(x) is **1-to-1** if each function value y = f(a) is hit exactly one time. In this case, there is an inverse function $f^{-1}(x)$ such that

$$f^{-1}\big(f(x)\big) = x$$

or equivalently that the left equation holds exactly when the right equation holds:

$$f(a) = b \qquad a = f^{-1}(b)$$

Example 1. The function $f(x) = e^x$ and $f^{-1}(x) = \ln(x)$ are inverse functions. More generally, b^x and $\log_b(x)$ are inverse functions.

Exercise 3. Compute the derivative of $y = \ln(x)$:

- (i) Consider the equivalent equation $e^y = x$, and find $\frac{dy}{dx}$ using implicit differentiation. $e^{y} = \frac{1}{2x} (x)$ $e^{y} = \frac{1}{2x} (x)$ $e^{y} = \frac{1}{2x} (x)$
- (ii) Substitute *x* back in (*what is x equal to*?), so that the resulting function for $\frac{dy}{dx}$ is only in terms of *x* (no *y*'s allowed!).

$$x=e^{2}$$
, so $\frac{dy}{dx}=\frac{1}{e^{2}}=\frac{1}{e^{2}}$

Exercise 4. If
$$p(x) = \ln(x^2 + 1)$$
, find $p'(x)$.

$$P'(x) = \frac{1}{x^2 + 1} \cdot \frac{1}{2x} \cdot \frac{1}{2x} \cdot \frac{1}{2x + 1} = \frac{1}{x^2 + 1} \cdot \frac{1}{2x} \cdot \frac{1}{2x + 1} \cdot$$

C. Derivative of inverse trig functions

In this section, we will follow a similar pattern as in Section B. However, to "substitute *x* back in", we will need to use a *geometric* understanding of the trig functions.

Exercise 5. Compute the derivative of $y = \sin^{-1}(x)$:

(i) Consider the equivalent equation sin(y) = x, and find $\frac{dy}{dx}$ using implicit differentiation.

(ii) Draw a triangle with angle y, and label the sides in terms of x.

sin(y) -, • 2+x = 1

(iii) Substitute *x* back in (no *y*'s allowed!).

