Math 135, Calculus 1, Fall 2020

11-02: Logarithmic Differentiation (Section 3.8) and Rates of Change (Section 3.4) The **derivative** f'(x) of a function y = f(x) gives:

- the slope of the tangent line
- the instantaneous rate of change of *y* with respect to *x*

A. LOGARITHMIC DIFFERENTIATION

Exercise 1. Consider the function $f(x) = (3x - 2)^{(7x^2+1)}$

(a) Take the natural log of both sides of this equation, and simplify the right-hand-side by using log rules:

$$\ln(a \cdot b) = \ln(a) + \ln(b), \qquad \ln\left(\frac{a}{b}\right) = \ln(a) - \ln(b), \qquad \ln\left(a^{b}\right) = b \cdot \ln(a).$$

$$\ln\left(f(x)\right) = \ln\left(2x - 2\right) \qquad - \left(2x + 1\right) - \left(2x - 2\right)$$

(b) Use implicit differentiation to compute f'(x) in terms of x and f(x). $f'(x) = \frac{1}{3x}(7x^{2}-1) \cdot \ln(3x-2) + (7x^{2}+1) \cdot \frac{1}{3x}(\ln(3x-2))$ $f'(x) = \frac{1}{3x}(n(3x-2) + (7x^{2}+1) \cdot \frac{3}{3x-2}$ $f'(x) = \frac{1}{3x}(x) \cdot \ln(3x-2) + \frac{21x^{2}+3}{3x-2} \cdot f(x)$ (c) Replace f(x) with the original expression to find f'(x) just in terms of x. $f'(x) = \int \ln\left((3x-2)^{1} + x\right) + \frac{21x^{2}+3}{3x-2} \int ((3x-2)^{2} + 1)^{2} + \frac{21x^{2}}{3x-2} \int$

B. RATES OF CHANGE

For any function y = f(x), the derivative $\frac{dy}{dx}$ measures the **instantaneous rate of change** of *y* with respect to *x*.

Example 1. If T(t) measures the temperature T (in degrees Celsius) of an object as a function of time t (in seconds), then $\frac{dT}{dt}$ measures the rate the temperature of the object is changing. The units of $\frac{dT}{dt}$ are °C/sec. If $\frac{dT}{dt} > 0$, then the object is warming; if $\frac{dT}{dt} < 0$, then the object is cooling.

B.1. **Application to Economics.** Let C(x) be the cost of producing a quantity x of some item, e.g. C(25) = \$3000 means it costs \$3000 to produce 25 items. The derivative C'(x) is called the **marginal cost**, and gives an approximation to the cost of producing the (x + 1)-st item. Similarly:

- if P(x) is the profit made from selling x items, then P'(x) is called the **marginal profit**, and
- if R(x) is the revenue made from selling x items, then R'(x) is called the **marginal revenue**.

Exercise 2. Suppose $C(x) = 8000 - 10x + x^2 + 0.01x^3$ represents the cost of producing *x* computers.

(a) Find the marginal cost function.

(b) Find C'(10) and explain its meaing. What are the units of C'(10)?

(c) Find the actual cost of producing the 11th computer. Compare your answer with C'(10).

$$c(11) - c(10) = (8000 - 10(11) + (11)^{2} + (0.01)(11)^{3})$$

- (8000 - 10(10) + (10)^{2} + (0.01)(10)^{3})
= 24,31 - 10

B.2. **Application to Physics.** If s(t) is the position of a moving object as a function of time t, then s'(t) = v(t) is the **instantaneous velocity**, and s''(t) = v'(t) = a(t) is the **instantaneous acceleration**. The speed of the object is defined to be |s'(t)| = |v(t)|, which is always positive.

Exercise 3. Suppose a particle moves according to the equation $s(t) = t^3 - 12t^2 + 36t$ for $t \ge 0$, where *s*, the position, is measured in meters, and *t*, the time, is measured in seconds. *Think of the particle moving along a number line, with s indicating the position on the line.*

(a) Compute the velocity and acceleration of the particle at time *t*.

$$v(t) = s'(t) = 3t^2 - 24t + 36$$

 $q(t) = v'(t) = s''(t) = 6t - 24$

(b) When is the particle at res?

$$\frac{4}{10} \quad is \quad V(4) = 0?$$

$$0 = 3 + 2^{2} - 24t + 36$$

$$0 = 4^{2} - 8t + 12 = (t - 6)(t - 2)$$

$$\frac{1}{15 = 6} \quad \frac{1}{15 = 2}$$
(c) What is the particle moving to the nght? To the left?

$$\frac{1}{10} = \frac{1}{10} = \frac{1$$