Math 135, Calculus 1, Fall 2020

11-02: Logarithmic Differentiation (Section 3.8) and Rates of Change (Section 3.4) The **derivative** $f'(x)$ of a function $y = f(x)$ gives:

- the slope of the tangent line
- the instantaneous rate of change of y with respect to x

A. Logarithmic Differentiation

Exercise 1. Consider the function $f(x) = (3x - 2)^{(7x^2 + 1)}$

(a) Take the natural log of both sides of this equation, and simplify the right-hand-side by using log rules:

$$
\ln(a \cdot b) = \ln(a) + \ln(b), \quad \ln\left(\frac{a}{b}\right) = \ln(a) - \ln(b), \quad \ln\left(a^b\right) = b \cdot \ln(a).
$$
\n
$$
\ln\left(f(x)\right) = \ln\left(\frac{a}{x} - 2\right) \quad \text{or} \quad \ln\left
$$

(b) Use implicit differentiation to compute $f'(x)$ in terms of x and $f(x)$. (c) Replace $f(x)$ with the original expression to find $f'(x)$ just in terms of x . $f'(x) = [ln((3x-2)^{14x}) + \frac{21x+3}{3x-2}] (3x$

B. Rates of Change

For any function $y = f(x)$, the derviative $\frac{dy}{dx}$ measures the **instantaneous rate of change** of with respect to x. y with respect to x .

Example 1. If $T(t)$ measures the temperature T (in degrees Celsius) of an object as a function of time *t* (in seconds), then $\frac{dT}{dt}$ measures the rate the temperature of the object is changing. The units time *t* (in seconds), then $\frac{d\mathbf{T}}{dt}$ measures the rate the temperature of the object is changing. The units of $\frac{dT}{dt}$ are °C/sec. If $\frac{dT}{dt} > 0$, then the object is warming; if $\frac{dT}{dt} < 0$, then the object is c

B.1. **Application to Economics.** Let $C(x)$ be the cost of producing a quantity x of some item, e.g. $C(25) = 3000 means it costs \$3000 to produce 25 items. The derivative $C'(x)$ is called the **marginal cost**, and gives an approximation to the cost of producing the $(x + 1)$ -st item. Similarly:

- if $P(x)$ is the profit made from selling x items, then $P'(x)$ is called the **marginal profit**, and if $P(x)$ is the *marginal marginal marginal*
- if $R(x)$ is the revenue made from selling x items, then $R'(x)$ is called the **marginal revenue**.

Exercise 2. Suppose $C(x) = 8000 - 10x + x^2 + 0.01x^3$ represents the cost of producing *x* computers. (a) Find the marginal cost function.

$$
C'(x) = 10 + 2x + 0.03x
$$

(b) Find $C'(10)$ and explain its meaing. What are the units of $C'(10)$?

$$
C'(0) = -10+2(10) + 0.03(100)
$$

= -10+20+3=~~13#/loopder~~
This must be probleve He (~~|th~~ over is approx ~~1~~)
= 10+30 +3 = ~~|12~~ (1)th upper is approx ~~1~~)
= 10+30 +30 = ~~|~~

(c) Find the actual cost of producing the 11th computer. Compare your answer with $C'(10)$.

$$
C(11) - C(10) = (9000 - 10(11) + (11)^{2} + (0.01)(11)^{3})
$$

$$
- (8000 - 10(10) + (10)^{2} + (0.01)(11)^{3})
$$

$$
= 24.31 - 10
$$

$$
= 414.31
$$

B.2. **Application to Physics.** If $s(t)$ is the position of a moving object as a function of time t , then The speed of the object is defined to be $|s'(t)| = |v(t)|$, which is always positive. $v'(t) = v(t)$ is the **instantaneous velocity**, and $s''(t) = v'(t) = a(t)$ is the **instantaneous acceleration**.

Exercise 3. Suppose a particle moves according to the equation $s(t) = t^3 - 12t^2 + 36t$ for $t \ge 0$, where s , the position, is measured in meters, and t , the time, is measured in seconds. *Think of the particle moving along a number line, with s indicating the position on the line.*

(a) Compute the velocity and acceleration of the particle at time t .

$$
v(x) = s'(k) = 3k^2 - 24t + 36
$$

 $q(t) \leq v'(t) \leq s''(t) = 6t - 2$

(b) When is the particle at rest?
\n
$$
0 = 2e^2 - 24t + 36
$$
\n
$$
0 = 2e^2 - 24t + 36
$$
\n
$$
0 = 2e^2 - 8e^2 + 12 = (k - 6)(k - 2)
$$
\n[$\sqrt{6}$]
\n $12\sqrt{12}$
\n $12\sqrt{1$