
Math 135, Calculus 1, Fall 2020

11-09: Extreme Values (Section 4.2)
The derivative 5 ′(G) of a function H = 5 (G) gives:
● the slope of the tangent line
● the instantaneous rate of change of H with respect to G

Today, we will begin our discussion of the application of the derivative to optimization problems,
finding the maximum or minimum values of a function.

A. Local Extrema

Definition 1. We say that 5 (2) is a
● local minimum occuring at G = 2 if 5 (2) ≤ 5 (G) for “all G near 2”
● local maximum occuring at G = 2 if 5 (2) ≥ 5 (G) for “all G near 2”

We will spend a good amount of time in the future finding and classifying these local extrema.

Theorem 2 (Fermat’s Theorem on Local Extrema). If 5 (2) is a local max or min, then 2 is a critical
point of 5 : either 5 ′(2) = 0 or 5 ′(2) DNE.

Thus we should think of critical points as potential local extrema.
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Exercise 1. Find the critical points and the associated function values for:
(a) 5 (G) = G2 − 2G + 4

(b) 5 (G) = G−1 − G−2

(c) 5 (G) = |2G + 1|
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B. Absolute Extrema

Definition 3. Let 5 be a function defined on an interval �, and let 0 be in �. We say that 5 (0) is the
● absolute minimum of 5 on � if 5 (0) ≤ 5 (G) for all G in �
● absolute maximum of 5 on � if 5 (0) ≥ 5 (G) for all G in �

Example 4. Not every function has an absolute max or min:
● The function 5 (G) = G on (−∞,∞) increases without bound as G → ∞, and descreases
without bound as G → −∞

● If 5 is discontinuous or defined on an open interval, it need not achieve a max value or a
min value

Theorem 5 (Extreme Value Theorem on a Closed Interval). If 5 is continous on closed interval � = [0, 1],
that 5 acheives both an absolute max and an absolute min on [0, 1]. Moreover, these occur at either critical
points or the endpoints 0, 1.

Exercise 2. Find the absolute extreme values of 5 (G) on the interval given by comparing values at
the critical points and endpoints:

(a) 5 (G) = G2 − 2G + 4, � = [0, 2]

(b) 5 (G) = G−1 − G−2, � = [0, 4]

(c) 5 (G) = |2G + 1|, � = [1, 3]
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Theorem6 (Rolle’s Theorem). Suppose 5 is continuous on [0, 1] and differentiable on (0, 1). If 5 (0) = 5 (1),
then there exists a number 2 between 0 and 1 such that 5 ′(2) = 0.

Exercise 3. Verify Rolle’s Theorem for 5 (G) = sin(G) on [�/4, 3�/4]: check that 5 (0) = 5 (1), and
find the value 2 in (�/4, 3�/4) such that 5 ′(2) = 0.

Exercise 4. Use Rolle’s Theorem to prove that 5 (G) = G3 + 3G2 + 6G has precisely one real root:
(a) Find points G = 0 and G = 1 such that 5 (0) < 0 and 5 (1) > 0.

(b) By the Intermediate Value Theorem, there thus exists some point 2 in (0, 1)with 5 (2) = 0,
so 5 (G) has at least one real root. (We do not need to find the exact value of G = 2.)

(c) By Rolle’s Theorem, what would have to be true about 5 if it had another root at G = 3?

(d) Why is the above not possible?
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Exercise 5. Find the absolute extreme values of 5 (G) on the interval given by comparing values at
the critical points and endpoints:

(a) 5 (G) = G2 + 1
G − 4 , � = [5, 6].

(b) 5 (G) = G + sin G, � = [0, 2�]

(c) 5 (G) = ln G
G

, � = [1, 3]
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