Math 135, Calculus 1, Fall 2020

11-09: Extreme Values (Section 4.2)

The **derivative** f'(x) of a function y = f(x) gives:

- the slope of the tangent line
- the instantaneous rate of change of *y* with respect to *x*

A. Extreme Value Theorem

Theorem 1 (Extreme Value Theorem on a Closed Interval). *If* f *is continous on closed interval* I = [a, b], *that* f *acheives both an absolute max and an absolute min on* [a, b]. *Moreover, these occur at either critical points or the endpoints* a, b.

Exercise 1. Find the absolute extreme values of f(x) on the given interval by comparing values at the critical points and endpoints:

(a)
$$f(x) = x + \sin x, I = [0, 2\pi]_{1}$$

 $f'(x) = 1 + \cos x = 0$
 $\cos xx = -1$
 $x = \pi(\overline{1}, 3 \leq \pi, 5\pi, ...$
 $f(x) = 1 + \sin(x) = 2\pi$
 $x = \pi(\overline{1}, 3 \leq \pi, 5\pi, ...$
 $f(x) = 1 + \sin(x) = 2\pi$
 $f(x) = 2\pi + \sin(x) = 2\pi$
 $f(x) = 2\pi + \sin(x) = 2\pi$
 $f(x) = 2\pi + \sin(x) = 2\pi$
 $f(x) = 1 + \sin(\pi) = 2\pi$
 $f(x) = 0$
 $f(x) = 1 + \sin(x) = 1$
 $f(x) = 0$
 $f(x) = 1 + \sin(x) = 1$
 $f(x) = 0$
 $f(x) = 1 + \sin(x) = 1$
 $f(x) = 0$
 $f(x) = 1 + \sin(x) = 1$
 $f(x) = 0$
 $f(x) = 1 + \sin(x) = 1$
 $f(x) = 0$
 $f(x) = 0$
 $f(x) = 1 + \sin(x) = 1$
 $f(x) = 1 + \sin(x) =$

Theorem 2 (Rolle's Theorem). Suppose f is continuous on [a, b] and differentiable on (a, b). If f(a) = f(b), then there exists a number c between a and b such that f'(c) = 0.

Exercise 2. Verify Rolle's Theorem for $f(x) = \sin(x)$ on $[\pi/4, 3\pi/4]$: check that f(a) = f(b), and find the value *c* in $(\pi/4, 3\pi/4)$ such that f'(c) = 0.

$$f(a) = \sin(\pi/4) = \frac{52}{2}$$

$$f(b) = \sin(3\pi/4) = \frac{52}{2}$$

$$f(b) = \sin(3\pi/4) = \frac{52}{2}$$

$$f'(x) = \cos x = 0$$

$$\chi = \frac{\pi}{2} \frac{3\pi}{2} - \frac{1}{2}$$

$$C = \frac{\pi}{2}$$

Exercise 3. Use Rolle's Theorem to prove that $f(x) = x^3 + 3x^2 + 6x$ has precisely one real root: (a) Find points x = a and x = b such that f(a) < 0 and f(b) > 0.

f(-1) = -1 + 3 - 6 = -4f(1) = 1 + 3 + 6 = 10

- (b) By the Intermediate Value Theorem, there thus exists some point *c* in (*a*, *b*) with *f*(*c*) = 0, so *f*(*x*) has at least one real root. (We do not need to find the exact value of *x* = *c*.)
- (c) By Rolle's Theorem, what would have to be true about f if it had another root at x = d?

If
$$f(0) = 0$$
, then then must exist some
X-value c in $(0,0)$ s.t. $f'(c) = 0$,

(d) Why is the above not possible?

$$f'(x) = 3x^{2} + 6x + 6 \stackrel{!}{=} O$$

$$x^{2} + 2x + 2 \stackrel{!}{=} O$$

$$X = -\frac{2 \pm \sqrt{2^{2} - 4(1)(2)}}{2} = -\frac{2 \pm \sqrt{4 - 6}}{2} X \quad not possible.$$

$$F(x) \quad has no xindhes when the derivation is O,$$