
Math 135, Calculus 1, Fall 2020

11-09: Extreme Values (Section 4.2)
The derivative 5 ′(G) of a function H = 5 (G) gives:
● the slope of the tangent line
● the instantaneous rate of change of H with respect to G

A. Extreme Value Theorem

Theorem 1 (Extreme Value Theorem on a Closed Interval). If 5 is continous on closed interval � = [0, 1],
that 5 acheives both an absolute max and an absolute min on [0, 1]. Moreover, these occur at either critical
points or the endpoints 0, 1.

Exercise 1. Find the absolute extreme values of 5 (G) on the given interval by comparing values at
the critical points and endpoints:

(a) 5 (G) = G + sin G, � = [0, 2�]

(b) 5 (G) = 1 − G
G2 + 3G

, � = [1, 4]

(c) 5 (G) = G ⋅ ln G, � = [1, 3]
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Theorem 2 (Rolle’s Theorem). Suppose 5 is continuous on [0, 1] and differentiable on (0, 1). If 5 (0) = 5 (1),
then there exists a number 2 between 0 and 1 such that 5 ′(2) = 0.

Exercise 2. Verify Rolle’s Theorem for 5 (G) = sin(G) on [�/4, 3�/4]: check that 5 (0) = 5 (1), and
find the value 2 in (�/4, 3�/4) such that 5 ′(2) = 0.

Exercise 3. Use Rolle’s Theorem to prove that 5 (G) = G3 + 3G2 + 6G has precisely one real root:
(a) Find points G = 0 and G = 1 such that 5 (0) < 0 and 5 (1) > 0.

(b) By the Intermediate Value Theorem, there thus exists some point 2 in (0, 1)with 5 (2) = 0,
so 5 (G) has at least one real root. (We do not need to find the exact value of G = 2.)

(c) By Rolle’s Theorem, what would have to be true about 5 if it had another root at G = 3?

(d) Why is the above not possible?
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