Math 135, Calculus 1, Fall 2020

11-13: First Derivative Test (Section 4.3)
The derivative f'(x) of a function y = f(x) gives:

e the slope of the tangent line
o the instantaneous rate of change of y with respect to x

The goal of today’s class is understand how we can use the first derivative to get information
about the original function.
Important result:

Theorem 1 (Mean Value Theorem (MVT)). If a function f is continuous on the closed interval [a, b] and
differentiable on (a,b), then there exists an x-value c € (a,b) such that
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tangent line at x = ¢, and
o the average rate of change / slope of the secant

line over the interval [a, b]

are equal. J
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Using the MVT, we can show the first derivative indicates whether the function is increasing,
decreasing, or neither:

f'(x)>0for x € (a,b) = f is increasing on (a, b)
f'(x) <0for x € (a,b) = f is decreasing on (a, D)

f'(c) = 0 = cis a critical point of f

We can use this to classify when a critical point is a local max or local min:

First Derivative Test. Suppose that x = c is a critical point of f.

f'(x) changes from + to —atc = cis a local max
f'(x) changes from —to + atc = ¢ is alocal min

f'(x) does not change signatc = ¢ is not a local extremum
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Example 2. Let f(x) = x3 - 3x? - 45x + 5. Together, let’s find the critical points of f, and classify
them using the First Derivative Test. On what interval(s) is f increasing? decreasing? Use this

Sg\( >‘igfo’rinagﬁo:l ’f;l s-lie’cczD a )g:ipf\lf(g : ’\:: O F\I(x\ _ (x‘-g\ " N
Wm 2x-15 =0 (- = (NN
(%~ )(x¥%) =0 ¢ =~ (DN = 7T

. @)= (DN = ¥
AN @)

4 2> 0 S b
>

]
fa + O — O 7 N

RN |

(X3 locd mex)) (X2S_loed =

rcise 1. For each of the following functions:

e Find the critical points of f(x)
e Find the intervals on which f(x) is increasing or decreasing.
¢ Classify the critical points using the First Derivative Test
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(b) f(x) = (x2 - 2x)e*
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(©) f(x)=15x3-x°
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