Math 135, Calculus 1, Fall 2020

11-13: First Derivative Test (Section 4.3)

The **derivative** $f'(x)$ of a function $y = f(x)$ gives:

- the slope of the tangent line
- the instantaneous rate of change of y with respect to x

The goal of today's class is understand how we can use the first derivative to get information about the original function.

Important result:

Theorem 1 (Mean Value Theorem (MVT)). If a function f is continuous on the closed interval [a, b] and *differentiable on* (a, b) *, then there exists an x-value* $c \in (a, b)$ *such that*

$$
f'(c) = \frac{f(b) - f(a)}{b - a}
$$

i.e.

- *the instantaneous rate of change / slope of the tangent line at* $x = c$ *, and*
- *the average rate of change / slope of the secant line over the interval* [a, b]

are equal.

 $^{\prime}$ $J'(x) > 0$ for $x \in (a, b) \Rightarrow f$ is **increasing** on (a, b) $^{\prime}$ $J'(x) < 0$ for $x \in (a, b) \Rightarrow f$ is **decreasing** on (a, b) $^{\prime}$ $J'(c) = 0 \Rightarrow c$ is a **critical point** of f

We can use this to **classify** when a critical point is a **local max** or **local min**:

First Derivative Test. Suppose that $x = c$ is a critical point of f .

 $^{\prime}$ $\alpha'(x)$ changes from + to – at $c \Rightarrow c$ is a **local max** $^{\prime}$ $\ell(x)$ changes from – to + at $c \Rightarrow c$ is a **local min** $^{\prime}$ $\ell(x)$ does not change sign at $c \Rightarrow c$ is **not a local extremum**

Example 2. Let $f(x) = x^3 - 3x^2 - 45x + 5$. Together, let's find the critical points of f , and classify the magnitude $\sum_{n=1}^{\infty}$ let $\sum_{n=1}^{\infty}$ let $f(x) = \sum_{n=1}^{\infty} f(x)$ them using the First Derivative Test. On what interval(s) is f increasing? decreasing? Use this

Exercise 1. For each of the following functions:

- Find the critical points of $f(x)$
- Find the intervals on which $f(x)$ is increasing or decreasing.
- Classify the critical points using the First Derivative Test

(a)
$$
f(x) = \frac{x^2 - 8x}{x + 1}
$$

$$
f'(x)
$$
 = $\frac{(2x-8)(x+1) - x^2-8x}{(x+1)^2}$
= $2\frac{x^2+2x-8x-8-8x^2+8}{(x+1)^2}$

$$
= \frac{x^{2}+2x-8}{(x+1)^{2}} \cdot \frac{(x+4)(x-2)}{(x+1)^{2}}
$$

$$
O_{(b) f(x) = (x^{2} - 2x)e^{x}}
$$
\n
$$
f'(x) = (2x - 2)e^{x} + (x^{2} - 2x)e^{x}
$$
\n
$$
= (x^{2} - 2)e^{x} = 0
$$
\n
$$
= (x^{2} - 2)e^{x} = 0
$$
\n
$$
x^{2} - 2x = 0
$$
\n
$$
x^{2} - 2x
$$