Math 135, Calculus 1, Fall 2020

11-13: First Derivative Test (Section 4.3)

The **derivative** f'(x) of a function y = f(x) gives:

- the slope of the tangent line
- the instantaneous rate of change of *y* with respect to *x*

The goal of today's class is understand how we can use the first derivative to get information about the original function.

Important result:

Theorem 1 (Mean Value Theorem (MVT)). *If a function* f *is continuous on the closed interval* [a, b] *and differentiable on* (a, b)*, then there exists an* x*-value* $c \in (a, b)$ *such that*

$$f'(c) = \frac{f(b) - f(a)}{b - a}$$

i.e.

- *the instantaneous rate of change / slope of the tangent line at x = c, and*
- *the average rate of change / slope of the secant line over the interval* [*a*, *b*]

are equal.

Using the MVT, we can show the first derivative indicates whether the function is increasing, decreasing, or neither:

$$f'(x) > 0$$
 for $x \in (a, b) \Rightarrow f$ is increasing on (a, b)
 $f'(x) < 0$ for $x \in (a, b) \Rightarrow f$ is decreasing on (a, b)
 $f'(c) = 0 \Rightarrow c$ is a critical point of f

We can use this to **classify** when a critical point is a **local max** or **local min**:

First Derivative Test. Suppose that x = c is a critical point of f.

f'(x) changes from + to - at $c \Rightarrow c$ is a **local max** f'(x) changes from - to + at $c \Rightarrow c$ is a **local min** f'(x) does not change sign at $c \Rightarrow c$ is **not a local extremum** **Example 2.** Let $f(x) = x^3 - 3x^2 - 45x + 5$. Together, let's find the critical points of f, and classify them using the First Derivative Test. On what interval(s) is f increasing? decreasing? Use this information to sketch a graph of f.

Exercise 1. For each of the following functions:

- Find the critical points of f(x)
- Find the intervals on which f(x) is increasing or decreasing.
- Classify the critical points using the First Derivative Test

(a)
$$f(x) = \frac{x^2 - 8x}{x + 1}$$

(a) $f(x) = \frac{(2x - 8)(x + 1) - x^2 r 8x}{(x + 1)^2}$
 $= \frac{(2x - 8)(x + 1) - x^2 r 8x}{(x + 1)^2}$
 $= \frac{(2x - 8)(x + 1) - x^2 r 8x}{(x + 1)^2}$
 $= \frac{(x + 1)(x - 2)}{(x + 1)^2}$