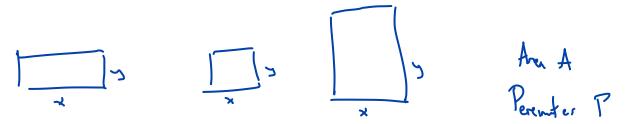
## Math 135, Calculus 1, Fall 2020


## 12-02: Applied Optimization

Today we will be applying our optimization techniques (EVT and others) to solve word problems.

- The goal for all of these questions is to translate the word problem into a math question of the form "where is this function of one variable maximized/minimized?" This process has many steps: finding the function at hand (and if necessary converting it into a function of one variable), considering the domain, and applying the EVT (or related analysis).
- Word problems are hard! They are hard for everyone students, grad students, professors, economists, politicans, doctors everyone. It is okay to get discouraged or frustrated. But these are the most important questions: applying calculus techniques and problem solving skills to the "real world". No one is going to offer you a job because you can take the derivative of a function, but a good problem solver is indispensable.

**Exercise 1.** A farmer has <u>2400 feet of fencing</u> and wants to use it to fence off a rectangular field. What are the dimensions of the field that has the largest area, and what is that largest area? *Remember, the goal is to model this situation with a function of one variable, and then optimize this function.* 

(a) Draw a picture of several possible fields. Label the pictures by assigning variables to any quantities that change. List any other variablese that might be important.



(b) Which quantity from Part (a) is the one that we want to maximize?

Area A

(c) Use basic geometry to write a formula for the variable you named in Part (b), in terms of other variables you identified from Part (a). You may end up with a function that has two input variables — that's okay! We will fix that in the next step.

A=x.y

(d) Turn the constraint that we have only 2400 feet of fencing into an equation involving your variables from Part (a). Then use this equation to eliminate one of the variables from your function in Part (c). *Your result should be a function of one variable, and this is the function to maximize* 

(e) What is the domain of your function, **in the context of this problem?** (You can allow for "silly" rectangles with no area.)



- (f) Use one of the procedures you know to find the absolute max value on the domain. (*Does the EVT apply? If not, what is the concavity of this function on the domain?*)
- $\begin{array}{cccc} A'(x) = 1200 2x \stackrel{!}{=} 0 & A(600) = 600.600 = 36000 \\ 1200 = 2x & A(0) = 0 \\ \hline x = 6.5d & A(1200) = 0 \end{array}$
- (g) Answer the questions asked: what are the dimensions of the field that has the largest area, and what is that largest area?



**Exercise 2.** A farmer has 2400 feet of fencing, and this time wants to fence off a rectangular field that borders a straight river. The farmer needs no fence along the river. What are the dimensions of the field that has the largest area, and what is that largest area? (This problem is similar to Exercise 1; use the same sequence of steps in your solution.) Explain why your answer is different from Exercise 1.

$$fren = x \cdot y$$

$$fren = x \cdot y$$

$$k = 2400 - 2y$$

$$k = 2400 - 2y^{2}$$

$$domain [0, 1200] (if x = 0, 2y = 2400 \rightarrow y = 1200)$$

$$A'(y) = 2400 - 4y \doteq 0$$

$$4y = 2400$$

$$A(0) = 0$$

$$A(1200) = 2.1200.1206 - 2.1200 = 0$$

$$A(1200) = 2.1200.1206 - 2.(600)^{2} = 920000 \text{ Abs max}$$

$$A(600) = 2400(600) - 2(600)^{2} = 920000 \text{ Abs max}$$

$$D_{\text{Inensions}}: = 9=600, \quad \chi = 2400 - 2y = 1200$$

**Exercise 3.** A jeweler wants to make a square-bottomed box with no top that has a volume of 500 cm<sup>3</sup>. What are the dimensions that minimize the surface area of the box?

| T I a l                                               | $S'(x) = 2x - 2000/x^2 = 0$                                                          |
|-------------------------------------------------------|--------------------------------------------------------------------------------------|
|                                                       | $Z_{x}$ : $\frac{2000}{x^{2}}$                                                       |
| X                                                     | Zx <sup>3</sup> = 2000                                                               |
| . SA = sum of givens of the                           | $X^{*} = 1000$ $P = \frac{500}{10^{2}} = 5$<br>$X = 10$ $P = \frac{500}{10^{2}} = 5$ |
| . SA= sur of succes<br>5 sides                        |                                                                                      |
| $= x^2 + 4 \times 2$                                  | $5''(x) = 2 + \frac{4000}{x^3} > 0$ when $x > 0$                                     |
| · Volume = 500= x2=                                   | Dimensions: 10 × 10 × 5                                                              |
| 2= 500                                                |                                                                                      |
| $= 35(x) = x^{2} + 4x \left(\frac{500}{x^{2}}\right)$ | $= x^{2} + \frac{2000}{x}$ donum (0, $\infty$ )                                      |
|                                                       |                                                                                      |

**Exercise 4.** The same jeweler wants another square-bottomed box with no top with the same volume of 500cm<sup>3</sup>. But this time, the material for the bottom costs \$2 per cm<sup>2</sup> while the sides cost \$1 per cm<sup>2</sup>. In this case, what dimensions give the box with the lowest cost?

| $cm^2$ . In this case, what dimensions give the        | e box with the lowest cost?                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|--------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| $C = 7x^{2} + 1.4x^{2}$<br>$V = 560 = x^{2} + 2$       | $C^{1}(x) = 4 + 4000/x^{3} > C  \text{for } x > 0$ $\implies x: 5\sqrt{4}  \text{is } a = \frac{1}{2} \int x^{2} + \frac{1}{2} \int $ |
| $z = \frac{500}{x^2}$                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| =) $C(x) = 2x^{2} + 4x \left(\frac{500}{x^{2}}\right)$ | Dimessions: 5.34 x 5.34 x 20<br>Dimessions: 5.34 x 5.34 x 216                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| $= 2 \frac{2}{x} + \frac{2000}{x}$                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| Domin: (0,00)<br>· $C'(x) = 4x - \frac{2000}{x^2} = 0$ |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| $y_{x} = 2000/x^{2}$                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| $4x^{3} = 2000$<br>$x^{3} = 500$                       | $500 = \frac{20}{100}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| x=534 17 2 2                                           | 5 4 16 3/16                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |